Published Cell lines used in perfusion cultures with the BioSep, Acoustic cell retention device.

<table>
<thead>
<tr>
<th>Cell line (reference #)</th>
<th>Company</th>
<th>Viable Cell density (c/ml)</th>
<th>Product</th>
<th>Aver. conc (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHK (25)</td>
<td>Cytos, Switzerland</td>
<td>7.5×10^6</td>
<td>EPO</td>
<td>35</td>
</tr>
<tr>
<td>DUKX B11-derived CHO (6)</td>
<td>University of British Colombia, Canada</td>
<td>4×10^6</td>
<td>t-PA</td>
<td>40</td>
</tr>
<tr>
<td>CHO (10)</td>
<td>4C, Belgium</td>
<td>25×10^6</td>
<td></td>
<td>272</td>
</tr>
<tr>
<td>DUKX CHO (11)</td>
<td>Genentech, U.S.</td>
<td>60×10^6</td>
<td>Rhesus TPO</td>
<td></td>
</tr>
<tr>
<td>CHO (26)</td>
<td>University of New South Wales, Australia</td>
<td>8×10^6</td>
<td>Human Therapeutic Protein</td>
<td></td>
</tr>
<tr>
<td>Human recombinant CHO (27)</td>
<td>IAM, Austria</td>
<td>20×10^6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Five Cells (9)</td>
<td>Institute Pasteur, France</td>
<td>2.7×10^6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB/C3 Mouse Hybridoma (1)</td>
<td>Centre for Bioprocess Engineering, U.K.</td>
<td>12×10^6</td>
<td>IgG</td>
<td></td>
</tr>
<tr>
<td>Mouse mouse Hybridoma (8)</td>
<td>Serono, Switzerland</td>
<td>24×10^6</td>
<td>IgG2A</td>
<td>60</td>
</tr>
<tr>
<td>Hybridoma (23)</td>
<td>Wageningen University, Netherlands</td>
<td>16×10^6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse human human hybridoma (30)</td>
<td>IAM, Austria</td>
<td>4×10^6</td>
<td>IgG</td>
<td></td>
</tr>
<tr>
<td>Hybridoma 2E11 (31)</td>
<td>University of British Colombia, Canada</td>
<td>22×10^6</td>
<td>IgG</td>
<td>146</td>
</tr>
<tr>
<td>Rat Hybridoma TFL-P (-)</td>
<td>University of British Colombia, Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monodorus subterraneus UTEX 151 (algae) (2)</td>
<td>Wageningen University, Netherlands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharopolyspora Erythraea (fungi) (13)</td>
<td>University of Surrey, U.K.</td>
<td></td>
<td>Erythromycin</td>
<td></td>
</tr>
<tr>
<td>Sf9 ATCC 1711-CRL (15)</td>
<td>Human Genome Sciences, U.S.</td>
<td>33×10^6</td>
<td>Virus production</td>
<td></td>
</tr>
</tbody>
</table>
References BioSep

Posters

Cell culture engineering VIII. 2002

Other

25. Upstream process development – manufacture of recombinant proteins in baby hamster kidney (BHK) cells.

University of Agriculture, IAM, (Prof. H. Katinger)

28. Th. Gaida, O. Doblhoff, K. Strutzenberger, H. Katinger, W Burger, M Groschl, B. Handle, E. Benes. Scale up of resonance field cell separation devices used in animal cell technology. poster and internet

29. S. Sonderhoff. Perfusion Culture utilizing acoustic resonance to separate and recycle cells. Poster

Cardiff University, (Prof. T. Coakley)

AppliSens

52. STS 90, BioSep: a novel separation technology

